User-defined types

Lecture 03.04

Outline

* struct
* struct pointers
* union

* enum

Programming fish store

/* Print out the catalog entry */

void catalog (char *name, char *species, int teeth, int age)

{
printf ("%s is a %s with %i teeth. He is %i\n",
name, species, teeth, age);

/* Print the label for the tank */

void label (char *name, char *species)
{
printf ("Name:%s\nSpecies:%s\n,
name, species);

Passing around multiple separate
pieces of data

* We always need to think about the order of parameters
 What if we pass the values in a wrong order?

* |f we add more data about the fish, or remove the data:
 We need to update the code with more parameters

* If we add 10 more pieces of data :
* We will have 10 more function arguments

* We need to group the data and pass it as a single thing

Would an array
work?

Create your own structured data
type with a struct

Definition of a new
data type

struct fish {
const char *name;

const char *species; O
int teeth; o 4

int age; 0"

struct fish snappy = {"Snappy", "Piranha", 69, 4};
/

Variable of a
new type

Passing struct as a parameter

int main() {
catalog("Snappy", "Piranha", 69, 4);
label("Shappy", "Piranha");

int main() {

catalog (snappy); Wirdpping

label _ parameters in a
abel (snappy); struct makes your

return O; code more stable

Struct in memory: pointer fields

Snappy\o Piranha\O

nar& species / teeth age
N\ / 69 4

struct fish snappy = {"Snappy", "Piranha", 69, 4}

struct fish {

const char *name;
What segment of memory const char *species:
does char * name points to? P !

Can we update fish name? int teeth;
int age;

Struct in memory: array fields

name species

teeth age

Snappy\0 Piranha\0

69 4

'\

struct fish snappy = {"Snappy", "Piranha", 69, 4}

Can we update fish
name now?

struct fish {
char name[10];
char species[10];
int teeth;
int age;

Reading struct fields

struct fish f = {"Snappy", "Piranha", 69, 4};

void label (struct fish f)
{

printf ("Name:%s\nSpecies:%s\n,
f.name, f.species);

With a dot

C: assignment copies data

* In languages like Java, if you assign an object to a variable, it
doesn’t copy the object, it copies a reference

* In C, all assignments copy data

* If you want to copy a reference to a piece of data, you
should assign a pointer

Assigning structs: by copy

——— Snappy\0 Piranha\0

nar& species / teeth age
N\ / 69 4

struct fish snappy = {"Snappy", "Piranha", 69, 4}
struct fish guppy = snappy;

/ struct fish {
const char *name;
name species teeth const char *species;
| 69 4 int teeth;
int age;
Copy of a Copy of a 7

pointer number

summary:
Differences between array and struct

 Like an array, struct groups a number of pieces of data
together

* An array variable is just an address of the first element of
the array, while struct variable is a name for a variable itself,
it has its own address

* In array you can access elements by index, in struct you can
only access fields by name

Struct is fixed length (no dynamic allocation)

Struct may store data of different types

Nested structs

struct preferences {
char *food;
float exercise hours;

struct fish {
const char *name;
const char *species;
int teeth;
int age;
struct preferences care;

Reading nested structs

struct fish snappy = {"Snappy", "Piranha", 69, 4, {"Meat", 7.5}};

Nested
struct

printf ("Snappy likes to eat %s", snappy.care.food);

printf("Snappy likes to exercise for %f hours",
snappy.care.exercise_hours);

Glve your new type a proper
name using typedef

struct peter_parker {

Y
We haveto _~ struct peter_parker p;
use word Name

struct here /

typedef struct peter_parker{

} spider_man;
Alias

Use as]
normal spider_man t;

data type

Anonymous stucts

typedef struct {

} spider_man;

Memory alignment in structs

* In general, struct fields get placed next to each other in

memory

* Sometimes computer adds small gaps between the fields,
because it likes data to fit inside word boundaries

* That happens because during program execution complete
words are read from the memory address: If a field was split
across more than one word, the CPU would have to read
several locations and somehow stitch the value together

Size of struct: Aligning to the
closest int (32 bit): 1/2

typedef struct n6 {
short n2;
int n4;

ING;

int main (int argc, char **argv){
N6 number;
printf("Size of <number> is %lu\n", sizeof (N6));

Aligning to the closest int: 2/2

typedef struct n5 {
char nl;
int n4;

IN5;

int main (int argc, char **argv){
N5 number;
printf("Size of <number> is %lu\n", sizeof (N5));

Structs as function parameters:
1/2

* Define a new data type: turtle

typedef struct {
const char *name;
const char *species;
int age;

} turtle;

* Function argument is of type turtle

void happy_birthday (turtle t) {
t.age = t.age + 1;
printf("Happy Birthday %s! You are now %i years old!\n",
t.name, t.age);

Structs as function parameters:
2/2

* Function argument is of type turtle

void happy_birthday (turtle t) {
t.age =t.age + 1;
printf("Happy Birthday %s! You are now %i years old!\n",

t.name, t.age); What is printed
} here?

e We call function with a variable of type turtle

int main() {
turtle myrtle = {"Myrtle", "Leatherback sea turtle", 99};
happy_birthday (myrtle);

printf("%s's age is now %i\n", myrtle.name, myrtle.age); And what is
return O: printed here?

What happened with myrtle?
Why it never gets older?

The code is cloning the turtle

void happy_birthday (turtle t) {
t.age =t.age + 1;

 The myrtle struct is copied to the parameter t
* Myrtle is the turtle that we are passing to the function

* Parameters are passed to functions by value: i.e. when you
call a function, the values you pass into it are assigned to
the parameters

* As if you had written:

turtle t = myrtle;

So what do we do if we want pass a
struct to a function that needs to
update it?

We need a pointer to the struct

 When you pass a variable to scanf(), you pass a pointer:
scanf("%d", &number);

* The same with structs. If you want a function to update a
struct variable, you pass the address of the struct:

void happy_birthday (turtle *t) {

}

happy_birthday(&myrtle);

Changing age of myrtle by
dereferencing the pointer

void happy_birthday (turtle *t) {
(*t).age = (*t).age + 1;
printf ("Happy Birthday %s! You are now %i years old!\n",
(*t).name, (*t).age);

Dereferencing struct pointers

* Make sure that *t is always wrapped in parentheses:
(*t).age # *t.age
*t.age = *(t.age), because dot has precedence over *

*(t.age) = “the contents of the memory at address t.age.” But
t.age isn’t a memory location! It’s like dereferencing an int

variable

(*t).age = t->age

* The -> notation saves on parentheses and makes the
code more readable

Sometimes the same type of thing
needs different types of data

@ D
mteger\BUV today: How do we
6 apples nodel
floating 1.5 Ib strawberries SUET
point e 0.5 pint orange juice
J

Sometimes the same type of thing
needs different types of data

e Quantity might be a count, a weight, or a volume

* Create several fields with a struct and use the corresponding
field when needed:

typedef struct {

short count;
float volume;

} fruit;

What is the problem with this
model?

typedef struct {

@

short count; Buy today:
6 apples

1.5 Ib strawberries

0.5 pint orange juice
} fruit; & J

float volume;

* It will waste memory space
e Someone might set more than one value

* There’s nothing called quantity

A union lets you reuse memory
space

count weight volume

typedef struct {
short count;
float weight;
float volume;
} quantity;

Memory space of the largest field (4 bytes)

typedef union {
short count;
float weight;
float volume;

} quantity;

union

* A union will use the space for just one of the fields in its
definition

 Whether you set the count, weight, or volume field, the
data will go into the same space in memory

typedef union {
short count;
float weight; g.count = 4;
float volume;

4

} quantity; 0.5

g.volume =0.5;

quantity q;

 Remember: with union there will only ever be one piece of
data stored

* The union gives a way of creating a variable that supports
several different data types

* You can interpret the same sequence of bits in a different
way

typedef union {
short count;
float weight; g.count = 4;
float volume;

4

} quantity; 0.5

g.volume =0.5;

quantity q;

unions are often used with structs

typedef union {
short count;
float weight;
float volume;

} quantity;

typedef struct {
char *name;
char *country;
guantity amount;

} fruit_order;

Using union with struct

fruit_order apples;
apples.name = “apples”;
apples.country = “Canada”;

apples.amount.count = 12;

fruit_order blueberries;
blueberries.name = “blueberries”;
blueberries.country = “Mexico”;

blueberries.amount.volume = 4.2;

. example

Interpreting the value

* We can store many possible values in a union, but no way of
knowing what type it is once it’s stored

* The compiler does not keep track of which fields are set and
how to interpret them

* There’s nothing to prevent us from setting one field and
reading another

* |s that a problem? Sometimes it can be a BIG PROBLEM

That’s a lot of cupcakes!

typedef union {
float weight;
int count;

} cupcake;

int main() {
cupcake order;
order.weight = 2;
printf("Cupcakes quantity: %i\n", order.count);
return O;

gcc badunion.c -o badunion && ./badunion

Cupcakes quantity: 1073741824

We need to keep track of the value types
we’ve stored in a union by ourselves

One possible trick is to create an enum

enum

* Sometimes you want to store something from a predefined
list of symbols:

enum day_of week {MONDAY, TUESDAY, WEDNESDAY,...};
enum colors {RED, GREEN, BLUE};

enums make your code more
readable and prevent invalid values

enum colors {RED, GREEN, BLUE};

enum colors favorite = BLUE;

e Under the covers the enum will just store one of
consecutive numbers

* In C code we can just refer to the symbols

GCC: Nope, | am
not compiling
this. It not on
my list

favorite = GLUE;

Using enum to keep track of
union values

typedef enum {

COUNT, POUNDS, PINTS typedef struct {
const char *name;

const char *country;
guantity amount;

typedef union { unit_of _measure units;
short count;

float weight;
float volume;

} unit_of measure;

} fruit_order;

} quantity;

Example of union with enum

printf(uThiS order contains ");

if (order.units == PINTS)

printf("%2.2f pints of %s\n", order.amount.volume,
order.name);

else if (order.units == COUNT)
printf("%i %s\n", order.amount.count , order.name);

This order contains 144 apples

This order contains 17.60 |bs of strawberries
This order contains 10.50 pints of orange juice

Recursive struct: island tours

)
S

typedef struct island {

char *name;
struct island * next;

}island;

