
User-defined types
Lecture 03.04

Outline

• struct

• struct pointers

• union

• enum

Programming fish store
/* Print out the catalog entry */

void catalog (char *name, char *species, int teeth, int age)

{

printf ("%s is a %s with %i teeth. He is %i\n",

name, species, teeth, age);

}

/* Print the label for the tank */

void label (char *name, char *species)

{

printf ("Name:%s\nSpecies:%s\n,

name, species);

}

Passing around multiple separate
pieces of data
• We always need to think about the order of parameters

• What if we pass the values in a wrong order?

• If we add more data about the fish, or remove the data:

• We need to update the code with more parameters

• If we add 10 more pieces of data :

• We will have 10 more function arguments

• We need to group the data and pass it as a single thing

Would an array
work?

Create your own structured data
type with a struct

struct fish {

const char *name;

const char *species;

int teeth;

int age;

};

struct fish snappy = {"Snappy", "Piranha", 69, 4};

Definition of a new
data type

Variable of a
new type

Passing struct as a parameter

int main() {

catalog("Snappy", "Piranha", 69, 4);

label("Snappy", "Piranha");

return 0;

}

int main() {

catalog (snappy);

label (snappy);

return 0;

}

Wrapping
parameters in a
struct makes your
code more stable

Struct in memory: pointer fields

69 4

struct fish snappy = {"Snappy", "Piranha", 69, 4};

name species teeth age

Snappy\0 Piranha\0

What segment of memory
does char * name points to?
Can we update fish name?

struct fish {

const char *name;

const char *species;

int teeth;

int age;

};

Struct in memory: array fields

69 4

struct fish snappy = {"Snappy", "Piranha", 69, 4};

name species teeth age

Snappy\0 Piranha\0

Can we update fish
name now?

struct fish {

char name[10];

char species[10];

int teeth;

int age;

};

Reading struct fields

struct fish f = {"Snappy", "Piranha", 69, 4};

void label (struct fish f)

{

printf ("Name:%s\nSpecies:%s\n,

f.name, f.species);

}

With a dot

C: assignment copies data

• In languages like Java, if you assign an object to a variable, it
doesn’t copy the object, it copies a reference

• In C, all assignments copy data

• If you want to copy a reference to a piece of data, you
should assign a pointer

Assigning structs: by copy

struct fish {

const char *name;
const char *species;

int teeth;

int age;

};

69 4

struct fish snappy = {"Snappy", "Piranha", 69, 4};

struct fish guppy = snappy;

name species teeth age

Snappy\0 Piranha\0

69 4

name species teeth

Copy of a
pointer

Copy of a
number

Summary:
Differences between array and struct

• Like an array, struct groups a number of pieces of data
together

• An array variable is just an address of the first element of
the array, while struct variable is a name for a variable itself,
it has its own address

• In array you can access elements by index, in struct you can
only access fields by name

• Struct is fixed length (no dynamic allocation)

• Struct may store data of different types

Nested structs

struct preferences {

char *food;

float exercise_hours;

};

struct fish {

const char *name;

const char *species;

int teeth;

int age;

struct preferences care;

};

Reading nested structs

struct fish snappy = {"Snappy", "Piranha", 69, 4, {"Meat", 7.5}};

printf ("Snappy likes to eat %s", snappy.care.food);

printf("Snappy likes to exercise for %f hours",
snappy.care.exercise_hours);

Nested
struct

Give your new type a proper
name using typedef

struct peter_parker {

...

};

struct peter_parker p;

typedef struct peter_parker{

…

} spider_man;

spider_man t;

Name

Alias

We have to
use word

struct here

Use as
normal

data type

Anonymous stucts

typedef struct {

...

} spider_man;

Memory alignment in structs

• In general, struct fields get placed next to each other in

memory

• Sometimes computer adds small gaps between the fields,

because it likes data to fit inside word boundaries

• That happens because during program execution complete

words are read from the memory address: If a field was split

across more than one word, the CPU would have to read

several locations and somehow stitch the value together

Size of struct: Aligning to the
closest int (32 bit): 1/2
typedef struct n6 {

short n2;

int n4;

}N6;

int main (int argc, char **argv){

N6 number;

printf("Size of <number> is %lu\n", sizeof (N6));

}

8

Aligning to the closest int: 2/2

typedef struct n5 {

char n1;

int n4;

}N5;

int main (int argc, char **argv){

N5 number;

printf("Size of <number> is %lu\n", sizeof (N5));

}

8

Structs as function parameters:
1/2
• Define a new data type: turtle

typedef struct {

const char *name;

const char *species;

int age;

} turtle;

• Function argument is of type turtle

void happy_birthday (turtle t) {

t.age = t.age + 1;

printf("Happy Birthday %s! You are now %i years old!\n",

t.name, t.age);

}

Structs as function parameters:
2/2
• Function argument is of type turtle

void happy_birthday (turtle t) {

t.age = t.age + 1;

printf("Happy Birthday %s! You are now %i years old!\n",

t.name, t.age);

}

• We call function with a variable of type turtle

int main() {

turtle myrtle = {"Myrtle", "Leatherback sea turtle", 99};

happy_birthday (myrtle);

printf("%s's age is now %i\n", myrtle.name, myrtle.age);

return 0;

}

What is printed
here?

And what is
printed here?

What happened with myrtle?

Why it never gets older?

The code is cloning the turtle

• The myrtle struct is copied to the parameter t

• Myrtle is the turtle that we are passing to the function

• Parameters are passed to functions by value: i.e. when you
call a function, the values you pass into it are assigned to
the parameters

• As if you had written:

turtle t = myrtle;

void happy_birthday (turtle t) {
t.age = t.age + 1;
…

}

So what do we do if we want pass a
struct to a function that needs to

update it?

We need a pointer to the struct

• When you pass a variable to scanf(), you pass a pointer:

scanf("%d", &number);

• The same with structs. If you want a function to update a
struct variable, you pass the address of the struct:

void happy_birthday (turtle *t) {

...

}

happy_birthday(&myrtle);

Changing age of myrtle by
dereferencing the pointer

void happy_birthday (turtle *t) {

(*t).age = (*t).age + 1;

printf ("Happy Birthday %s! You are now %i years old!\n",

(*t).name, (*t).age);

}

Dereferencing struct pointers

• Make sure that *t is always wrapped in parentheses:

(*t).age ≠ *t.age
*t.age = *(t.age), because dot has precedence over *

*(t.age) = “the contents of the memory at address t.age.” But
t.age isn’t a memory location! It’s like dereferencing an int
variable

(*t).age = t->age
• The -> notation saves on parentheses and makes the

code more readable

Sometimes the same type of thing
needs different types of data

Buy today:
6 apples
1.5 lb strawberries
0.5 pint orange juice

integer

floating
point

How do we
model

quantity?

Sometimes the same type of thing
needs different types of data
• Quantity might be a count, a weight, or a volume

• Create several fields with a struct and use the corresponding
field when needed:

typedef struct {

...

short count;

float volume;

...

} fruit;

What is the problem with this
model?

• It will waste memory space

• Someone might set more than one value

• There’s nothing called quantity

Buy today:
6 apples
1.5 lb strawberries
0.5 pint orange juice

typedef struct {

...

short count;

float volume;

...

} fruit;

A union lets you reuse memory
space

count weight volume

typedef struct {
short count;
float weight;
float volume;

} quantity;

typedef union {

short count;

float weight;

float volume;

} quantity;

Memory space of the largest field (4 bytes)

union

• A union will use the space for just one of the fields in its
definition

• Whether you set the count, weight, or volume field, the
data will go into the same space in memory

typedef union {

short count;

float weight;

float volume;

} quantity;

quantity q;

q.count = 4;

4

0.5

q.volume = 0.5;

• Remember: with union there will only ever be one piece of
data stored

• The union gives a way of creating a variable that supports
several different data types

• You can interpret the same sequence of bits in a different
way

typedef union {

short count;

float weight;

float volume;

} quantity;

quantity q;

q.count = 4;

4

0.5

q.volume = 0.5;

unions are often used with structs

typedef union {

short count;

float weight;

float volume;

} quantity;

typedef struct {

char *name;

char *country;

quantity amount;

} fruit_order;

Using union with struct: example

fruit_order apples;

apples.name = “apples”;

apples.country = “Canada”;

apples.amount.count = 12;

fruit_order blueberries;

blueberries.name = “blueberries”;

blueberries.country = “Mexico”;

blueberries.amount.volume = 4.2;

Interpreting the value

• We can store many possible values in a union, but no way of
knowing what type it is once it’s stored

• The compiler does not keep track of which fields are set and
how to interpret them

• There’s nothing to prevent us from setting one field and
reading another

• Is that a problem? Sometimes it can be a BIG PROBLEM

That’s a lot of cupcakes!

typedef union {

float weight;

int count;

} cupcake;

int main() {

cupcake order;

order.weight = 2;

printf("Cupcakes quantity: %i\n", order.count);

return 0;

}

gcc badunion.c -o badunion && ./badunion
Cupcakes quantity: 1073741824

We need to keep track of the value types
we’ve stored in a union by ourselves

One possible trick is to create an enum

enum

• Sometimes you want to store something from a predefined
list of symbols:

enum day_of_week {MONDAY, TUESDAY, WEDNESDAY,…};

enum colors {RED, GREEN, BLUE};

enums make your code more
readable and prevent invalid values

enum colors {RED, GREEN, BLUE};

enum colors favorite = BLUE;

• Under the covers the enum will just store one of
consecutive numbers

• In C code we can just refer to the symbols

favorite = GLUE;

GCC: Nope, I am
not compiling
this. It’ not on
my list

Using enum to keep track of
union values
typedef enum {

COUNT, POUNDS, PINTS

} unit_of_measure;

typedef union {

short count;

float weight;

float volume;

} quantity;

typedef struct {

const char *name;

const char *country;

quantity amount;

unit_of_measure units;

} fruit_order;

Example of union with enum

printf("This order contains ");

if (order.units == PINTS)

printf("%2.2f pints of %s\n", order.amount.volume ,
order.name);

else if (order.units == COUNT)

printf("%i %s\n", order.amount.count , order.name);

…

This order contains 144 apples
This order contains 17.60 lbs of strawberries
This order contains 10.50 pints of orange juice

Recursive struct: island tours

typedef struct island {

char *name;

struct island * next;

} island;

